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1. Introduction. 1

§1 Introduction.

Let F(z) be a distribution function on the real line with finite second order
moment. Then the quantile function F~!(u) is square integrable as a function of u €
(0,1). Hence F~'(u) can be expanded into a Fourier series with respect to a complete
orthonormal system of L2[0, 1]: the space of square integrable functions on (0, 1). This
idea was used by Sugiura (1962,1964) in connection with approximation of expected values
of order statistics. In this paper we first note that various complete orthonormal systems
of L2[0, 1] can be obtained by quantile transformation of complete orthonormal systems
of L2(F) where, L2(F) denotes the space of square integrable functions with repect to a
distribution 7, for example the normal distribution. If we take the normal distribution as
F, then the TFourier coeflicients can be thought as componcents with respect to an infinite
dimensional coordinate system whose origin is the normal distribution itself. This gives a
very crisp idea of distances and directions between various distributions. Furthermore the
Fourier series expansion of quantile function closely parallels the Cornish-Ttisher expansion
(Fisher and Cornish, 1960) and gives a general method of approximating quantiles of one
distribution based on quantiles of another distribution. The Cornish-I'isher expansion is
asymptotic in its nature, whereas our expansion leads to a convergent series. These ideas

are discussed in Section 2.

When I is taken to be an empirieal distribution function I, the Fourier coefficients
of F'71 provide a decomposition of the sum of squares constituting the Shapiro-Francia
statistic (1972).. This is analogous to the components of the Cramér-von Mises statistic
discussed by Durbin and Knott (1972) and Durbiﬁ, Knott, and Taylor (1975). Sec also
Durbin (1973). As in the case of components of the Cramér-von Mises stalistic, various tests
can bc.constructed from the bcomponent,s depending on the possible alternative hypotheses,
whereas the Shapiro-Francia test serves as a test which deteets an overall departure from
the null hypothesis. The Shapiro-Francia statistic and its components can be applied to

- nonnormal distributions as well. Sece Section 3 for these developments.

In the study of asymptotic distributions of the Shapiro-Francia test statistic, de
Wet and Venter (1972) implicitly used our components as cigenfunctions of the asymptotic

covariance function of the quantile process. In the normal case, the eigenfunctions are the



Hermite polynomials. This has becn noticed in other contexts too. See Stephens (1975).
_ Despite this close analogy to the components of the Cramér-von Mises statistic, components
of the Shapiro-Francia statistic have not been taken up as useful tools in themselves. We
have to add, though, that components which are closely related to ours have been discussed
in the framework of weighted Cramér-von Mises tests with various weight functions. See de
Wet and Venter (1973a,b), Pettitt (1977,1978). This connection is based on the asymptotic
equivalence between the Shapiro-Francia statistic and certain .weighted Cramér-von Mises

statistic. See Gregory (1977a,b). We give a brief discussion on this point in Section 4.

§2 Orthogonal expansion of quantile function.

2.1 Mallow’s do-distance and an angle between two distributions.

Let T'; be the set of (right continuous) distribution functions on the real line having
finite second order moments, I'g = { I : [ 22dF < oo }. Let F~! be the quantile function
which we take to be right continuous for definiteness: P~ (u) = sup{z : I'(z) < v }. For
F €T3 we have [ z2dlF = fol(F"l('lL))?du < oo. Hence by taking the quantile function
I'y is mapped into L2[0,1], the space of square integrable functions on (0,1). Mallow’s
dy-distance between Iy and Fy in I'p is defined by the usual inner product <,> of L? [0, 1],

namely

1 B
(2.1) hlF, 1) = (| (7 ) - P )Paup 2,
A nice discussion on this is given in Section 8 of Bickel and Freedman (1981).

Proposition 2.1. Let Iy, Fy € T'y. Then dg(I'y, I'g) = 0 if and only if I'y = Iy.

Proof is easy and omitted. From now on we are mainly interested in the cosine of
angle between two distibutions obtained from dgy-distance. Let U be uniformly distributed

on (0,1). We define

(2.2) p(Fy, ) = Cor(FTY(U), F5 ' (U)).
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Note that p is invariant with respect to location and scale changes in Fy and Fy. For
example if IYy(z) = Fo((z — a)/b) = u (b > 0) then Fi'(w) = a + bFg'(u). Hence
p(IF'y, Fa)= Cor(a + bFg ' (U), F3'(U))= Cor(Fg ' (U), F3'(U))= p(Fo, Fy). Similarly for
F3. Therefore p can be interpreted as the cosine of angle between location scale families.

Also note that p is nonnegative because Fl_l,Fz_l are both monotone increasing.

Proposition 2.2. P(F1, Fy) = 1 if and only if Fy s a location scale transform of Fy.

This follows from the fact that if Fy, Fy have mean 0 and variance 1, then

dz(Fl,F2)2 = 2(1 - p(Fl, Fz))

2.2 Orthonormal basis with respect to a specific distribution.

By taking the quantile functions we mapped Ty into L2[0, 1]. Now we take an
appropriate complete orthonormal system in L2[0,1]. The lmportant point is that this can

be done with respect to a specific distribution. First we prove

Proposition 2.3. Let I'(€ T'y) be a continuous distribution function which is supported
[i.e,, strictly increasing) on an interval. Then {¥:}2. is a complete orthonormal system of

={¢: [ $(z)2dF(z) < oo} if and only if {th;0 F=1}2° | is a complete orthonormal
system of L]0, 1].

Proof: Let {4;}2 , be a complete orthonormal system of L2(F). Then

/ el B (a0) )b (P () s = /_ oo Vil(2);(2)dF (z) = 6,;.

Heunce ; o F'~!'s are orthonormal. To prove completencss suppose f € L2[0, 1] and <
[ihio 7' >=0, {=0,1,.... By assumpion #7(#"~!(u)) = u. This implics that Jol'e
I2(FP)and 0 =< f,9p;0F~! >= [ F(F(z))ps(z)dF, =0, 1,.... Hence by completeness
of {$:i}2 4 foF =0in LA F) or [ f(F(z))2dF(:z:) = 0. Hence for f(#)2du = 0. This

shows that {1, o F—! };’;0 is complete in L2[0, 1]. Converse can be proved similarly. g

We can now express G~! in a Fourier series using the orthonormal basis {%; 0

F=1Y2 . Since we are working with a location scale famil we take F with mean
1==0 g y



0 and variance 1, namely [zdF = 0, [22dF = 1. In this case by Gram-Schimidt
orthonormalization we can take an orthonormal system {; };2, of L*(F) with 9o = 1,
1, = =z, since these two are orthonormal. In the sequel we work with this choice of

orthonormal basis.

Theorem 2.1. Let I' (€ 1'3) be a continuous distribution function supported on an
interval and with mean 0 and variance 1. Let {1; };o, be a complete orthonormal system

of L2 (F) = {¢: [ $%dF < oo} with g =1, 1 = z. Then for any G €Ty
(2.3) G u) = D ahi(FHu)),
i=0

where a; =< G~ ,9; o F~! > and convergence on the right hand side is in L2[0,1].

Furthermore a; =0, 1==2,3,..., if and only if G is a location scale transform of I'.

Proof: We nced only to prove the last statement. Let pg = [ 2dG. Note

1
ap =< G741 >=/ G~ Hu)du = pg,
0 .
o =< G LF ' >=< G '~ pg, G — pg >Y? p(G, ),

o0
<G V= pg, Gl —pug >= Za?
i=1
Hence
.O?

(2.4) oG, F) = ar /(3 ad)V2.

1==1

Therefore p(G,F)=11if and only if a; =0, 7=2,3,.... 1

I we normalize G as well to have mean 0 and variance 1, we have ag = pg = 0

and Y o, a? = 1. Hence we can write
(25) oG F) = a1 =(1- Y a2
: 1=2

This shows that if we represent a location scale family of distributions by the normal-

ized disribution G with mean 0 and variance 1, then it can be uniquely represented by
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components a;, = 2,3,... with respect to (infinite dimensional) coordinate system {;0
1 }22 We call a;’s components of G with respect to F'. By Theorem 2.1 the origin in

this coordinate system is F' itself.

The components a;, 1 = 2,3, ... ; can be used in two ways. First it gives informa-
tion on how much and in what direction @ deviates from F'. See Section 2.3 below. Second
use is for an approximation of quantiles. Let Ya) Ta be a-quantiles of G and F, revspectively.
Then (2.3) implies '

oo
(2.6) Yo = Z a;%i(zq).

i=0
Hence we can approximae a-quantile of G by (a function of) a-quantile of . This is
analogous to Cornish-Fisher expansion. Sce Fisher and Cornish (1960). Cornish-Fisher
expansion is asymptotic in its nature, whereas (2.6) is abplicable for any distribution with
finite variance. Concerning the convergence of (2.6) the following distributional result is
imrediate from Theorem 2.1. Since L2-convergence implies convergence in distribution we

have

Thoerem 2.2. Let X,Y be distributed according to I' and G respectively. Let X, =
im0 @i X). Then X, — Y in distribution as n — oo,

Furthermore for standard distributions and standard orthonormal systems (2.6)
converges pointwise. This is an obvious advantage of (2.6) over Cornish-Fisher expansion.

More precisely we have

Theorem 2.3. Let G~ (u) be piecewise continuously differentiable. If I, { 9, }i2 o are
either (i) normal distribution and the Hermite polynomials, or (it) Gamma distribution and
the Laguerre polynomils, or (i) Beta distribution and the Jacobs polynomials, properly
normalized, then the right hand side of (2.6) converges pointwise at every continuity point

of G™'. At a discontinuity point it converges to (G )+ G~ Y{u - 0))/2.

These are standard results in the theory of orthogonal polynomials. See Chapte

4 of Lebedev (1965) or Chapter 9 of Szegd (1959). Various refinements of Theorem 2.3 can

be found in these and other books on special functions and orthogonal polynomials.



2.3 Some examples.

We present components of several distributions with respect to normal, exponen-
tial, and uniform distributions. Here we consider distributions for which G='(u) (or F~1(u))
can be explicitly written and hence the components can be computed rather easily. More

extensive tables of components are found in Takemura (1983).

unif exp logistic  weibull(2/3)  weibull(2) beta(2, 2)
wrt normal wrt normal  wrt normal wrt exp wrt exp wrtuntf
1 9772 9032 .9959 .9692 .9565 9959
2 4212(3.71) 2423(3.22)  —.2391(32.8)
3 —.1995(11.7)  .0818(.09) .0902(.25) - --.0404(.53)  .1196(16.0) .0851(11.3)
4 —.0116(.01) 0151(.15) —.0747(9.39)

5 .0669(1.79) —.0041(.00) —.0045(.00) —.0076(.06) .0523(6.17) .0264(2.72)

6 0044(.03)  —.0392(4.36)
7 —.0258(.31) —.0028(.01)  .0308(3.25)  .0120(.95)
8 0020(.00)  —.0251(2.51)
9 .0106(.06) .0209(2.00)  .0066(.41)
10 —.0177(1.63)
11 —.0046(.01) 0153(1.35)  .0041(.21)

There are six cases listed here. Itach casc has two columns: (i) ag, (ii) 100 X
> ikt a?/ 352 , a2, which is the remaining percentage out of 1—p(G, F)? when ag, ..., ax
are taken into account. The six cases are (i) uniform distribulion with resbect to normal,
(ii) exponential distribution with respect to normal, (iii) logistic distribution with respect
to normal, (iv) Weibull distribution with parameter .66 with respect to exponential, (v)
Weibull distribution with parameter 2 with respect to exponential, (vi) Beta distribution
with parameters (2,2) with respect to uniform, respectively. Orthonormal bases used are
the Iermite, Laguerre, and Legendre polynomials for normal, exponential, and uniform

distributions respectively. Details of computational procedures are found in Appendix.

§3 Compohents of the .Shapiro-Francia, statistic.

In the previous section distributions were thought as population distributions. In
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this section we let G = G, be an empirical distribution function obtained from order -
statistics X4y < ... < X(n). We show that the components of G,, give a decomposition
of the Shapiro-Francia statistic: W' = (3 X(;ym.)?/(3(X: — X)2 - Y. mZ) where m; =
E(X).

Note that G;1(u) = X, for ( — 1)/n < u < i/n. Hence we have

i/n

< GZI:F—I > = ZX(,-) A Ry F_l(u)du
=1 i—1)/n

F~Y(i/n)

(3.1) =YX / zdF(z)

i—1 Fo1((i—-1)/n)

= ,17 i Xwyms,

e=1

where m; is the mean of the distribution which is obtained by truncating F* from (¢ —
1)/n-quantile to ¢/n-quantile of F and renormalizing by n. Clearly m! is close to m;.
Therefore p(Gn, F')? is cssentially the same as the Shapiro-Francia statistic (1972). See
Shapiro and Wilk (1965) too. Actually p(G,, F)2 seemns simpler than the Shapiro-Francia
statistic because m; in (3.1) is generally easier to compute than the expected value of ¢-th
order statistic. For the normal case sec Section 3.1 below. TFurthermore it is intuitively
clear that p(G,, F) — p(G, F') as n — oo and by Proposition 2.2 the test based on Gy I)
is consistent. This can be proved by simplifying and slightly modifying Sarkadi’s proof

(1975) of consistency of Lhe Shapiro-Francia test.

Although ay = p(G,,, F') gives a simple omnibus test we want to propose a larger
class of tests which contains a; as a special case. As discussed in Section 2.2 we have the
relation af = 1 — 2z a?. In view of this relation we consider tests based on the whole
sequence (ag,as,...) rather than based on a? alone. Since the components of ¢, tend
to be close to the components of the population distribution G, we can easily construct

a test which is efficient against a particular alternative G. More specifically let G have

_components ag,ag,.... Now using the idea of regression let 7 = Y %

=

o @:a. The test
~ with the rejection region T' > ¢ clearly has high power against the alternative G. As we
can see from the examples of Section 2.3 components gencerally converge to zero fairly fast.
Hence in 7' = }°° , a,a? and doi=ga? the important terms are the first few terms. It is

therefore essential to be able to interpret low order components.



Now we apply these ideas to tests of specific distributions.

3.1 Tests of normality.

Let ¢(z) = ®'(z) be the standard normal density and { Hi(z) }reeo be the Hermite
polynomials given in (A1) of Appendix. With respect to the orthonormal hasis { H(®(u))/VE'}
components are given by ay =< G !, Hx o ®~! > /sVk! where 82 = 37 (X; — X)?/n.

Now |

@~ (i/n)

Vil = Y X [,

Hy(z)p(z)dx
i—1 fb_l((":_l)/"") ( ) (

= Z Xy Hr—1(Z—1)/n) W Z(i—1)fn) — He—1(Zipn )0 Zi )],

i=1
where Z, = ®~!(a) is a-quantile of the standard normal distribution. We see that ax’s are
very simple to calculate. Tn particular a; = p(Gp, ®) = 307\ Xi)(M(Z(i—1)/n)—H(Ziyn))/ 8

corresponds to the Shapiro-Francia statistic.

In order to interpret low order terms let us look at them as regression coefficients
in the following setting. Consider G;! o ®. Plolting this function corresponds to plotting
the observations on probability paper, where the normal scores are taken as z-axis. We
give the weight ¢(z) to the z-axis and consider the following weighted least square problem:

min /‘°° (G Y (¥(z)) - i b H () /VE) 2 $(z)dz.
k=0

biyerebn J —oo

Namely we approximate G;! o ® by a polynomial in the sense of weighted least squares.
Because of the orthogonality of Hermite polynomials, the minimizing values of bgy;..., b,
are cqual to the components ay, ..., a,. Note that Ha(z) = 22 — 1 and H3(z) = 2 — 3z.
I'rom Lhe forms of these polynomials it is clear that ag roughly corresponds to skewness
and a3 roughly corresponds to kurtosis. Positive ag indicates skewness toward the right
and positive a3 indicates a heavier tail than the normal distribution. Another way of secing
this is the following. Consider sv/2az. It can be approximated by (1/n) Z_X(i)(m? - 1)
where m; = L(X{;). This corresponds to (1/n) Z(X:(;i) - X)) = 2(X?¥ - X;). Similar
consideration applies to higher order components. Examples in Section 2.3 comfirm the

above interpretations.
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For symmetric alternatives, T = y°7° | 03i1/ g 3k p1 = 1—a2/ POPAnY

is of considerable interest. Actually T = 1 — p(G,, ®)? where G, is such that p(G,,, G,) =

max{ p(G,,G) | G is symmetric }. The maximizing G, can be given explicitly as
1 :
(3.2) Gyl u) = (G (W) - G (1~ w)).

By symmetry we have < G, Hypo® 1 >= 0, < Gyl L, Hayppr00 ! >=« Gt Hypyq0
&1 >= ayr,;. Note that s20(Gn, G,)2= 3 ie0 %34 1- By Cauchy-Schwarz it is straightfor-
ward to show that this G; maximizes p(Grn, G) where G is symmetric. Furthermore 1 —
p(Gs,®)? =1—al/ 372 a3s., as claimed above. The denominator E?:é a3,y is the
variance of G, which can be calculated as follows. Note that G is the empirical distribution
function of (X(y)—X{,,))/2, (X@)=X(n-1))/2 ... (X (n)—X(1))/2. Therefore D b0 B =
E:-':](X(i) ~ X(n—i+1))?/4n. Thus T can be computed easily.

We now turn to the asymptotic null distribution of each component. In the case

of normality we have the following nice result:

Theorem 3.1. Under the null hypothesis of normality (\/na;,,...,\/na;), 2 <i; <
.v. < ik are asymptotically ndependently distributed according to the normal distribution

with mean zero and variance (;+1),5=1,...,k respectively.

This can be proved using results concerning the asymptotic normality of linear
combinations of order stalistics. For example the conditions of Theorem 1 of Shorack
(1972) arc straightforward to check. Sce Example 1b of Shorack (1972) in particlar.
Asymptotic independence of components follows from the formula for the asymptotic
covariance in Corollary 4 of Chernoft, Gastwirth, énd Johns (1967). Similarly under mild

regularity conditions on G it is straghtforward to show that n!/27T — nl/? pres

f=

o a;ad has
an asymptotic normal distribution with mean zero and variance
1 pt
o? =/ / (min(s, £) -fst)J(s)J(t)/[qS((D_l(s))¢(<I>_1(t))]dsdt
go 0
= > {ad)*/(i +1),

=2

where {a?} are components of G and J(u) = G71(u) — a®~'(u). See Theorem 3 of

Chernoff, Gastwirth, and Johns (1967), Corollary 4.1 of Stigler (1969), and Theorem 1 of
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Shorack .(1972) for appropriate regularity conditions. As for the test against symmetric
alternatives : T = 1 —a%/3 72 a3, q, using results from de Wet and Venter (1972,
1973a) it can be shown that the distribution of n(T — w,) approaches the distribution of
(1/2) 372, (Y2 —1)/(k +1) where py’s are suitable constants and Y1, Yz, ..., are indepen-

dent standard normal random variables. This is intuitively clear from Theorem 3.1.

3.2 Tests of exponentiality.

Let f(z) = €%, F(z) = 1 — e~ * and { Lk(z) } 5oy be the Laguerre polynomials
given in (A1) of Appendix. In this case FF=!(u) = —log(l — u) and

Y(i/n)
Loy ) = Lot = 6 = /)] = - log(t /),

where Lj(x) = (—1)"~Y{d*~1/dz"~1)(z"e~*). Similar considerations as in the normal case
indicafe that positive ag corresponds to a heavier tail toward the right than the exponential
distribution. This is confirmed by examples in Section 2.3. Individual components and the

test of the form 7= 3,77, a;a? can be used as in the normal case.

The asymptotic null distribution is not as nice as in the normal case. Again using

results of Chernoff, Gastwirth, and Johns (1967) and others we have

Theorem 3.2. Under the null hypothesis of exponentiality, (/nai,,...,/na;), 2 <

11 < ... < i are asymptotically normally distributed with mean zero and covariance
o0

(3.3) 0ij =/ L;* (2) L} (z)e " dz,
0

where (z' WL (z) = [y Li(y)dy — Jo e Jy Li{y)dyda.

Li*(z) and 0,5 can be explicitly evaluated using (Al) in Appendix.

- 8.3 Tests of uniformity.

Here the results are similar to those for the exponential distribution. Let { Pe(x) }ro_ o

be the Legendre polynomials given in (Al). Then { Pe(2u — 1)v/2k + 1 }:°=0 forms a com-

plete orthonormal system on [0,1]. fii/_fll)/n Pr(2u — l)d'u, can be explicitly evaluated using
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(A1). Similar interpretations for low-order components can be given as in the normal
and exponential cases. Under the null hypothesis n!/2g;’s are asymptotically normally

distributed with mean zero and covariance

1
(3.4 o= [ Pilarie)s,

where P}(z)/V2i+1 = [ P(2u — 1)du — fol Iy Pi(2u - 1)dudz. This can be explicitly
evaluated using (A1).

§4 Discussion.

Here we discuss relations and relative advantages of our approach to other tech-
niques cspecially the components of Cramér-von Mises statistics. Our approach is based
on the empirical quantile function whereas the lattier is based on the empirical distribution

function.

| One difficulty with techniques based on empirical distribution function is that
it is not very natural to estimate p:-xrafncters in that setting. When quantile function is
used instead, estimation of location and secale paramcters are taken care of by virtue of
invariance, although actually this reduces to estimating mean and variance by their sample
quantities. In fact the analysis becomes quite more complicated and individual cases have
to be treated separately when various parameters are estimated. See for example Table 1

of Durbin, Knott, and Taylor (1975).

The reason that individual cases require separate treatments is that by “components”
Durbin et al. mean components which are asymptotically independently distributed from
each other. In our case this corresponds to obtaining principal components of the (infinite
dimensional) asymptotic covariance matrices given in (3.3) and (3.4). Although this might
be a logically natural thing to do on the ground that (i) components are uniquely deter-
mined, (ii) asymptotic distribution is understood better in this way, it might not be very
useful from practical viewpoint. When components change depending on what parameter
is estimated, it becomes harder to interpret them. The uscfulness of the definition of our
components is in Theorem 2.1 which is derived on the basis of population distributions

rather than sampling properties and the interpretations of individual components scem to



12

be clearer. On the other hand our components do not possess the properly of asymptotic

independence in general. The case of normal null hypothesis is a fortunate exception.

A formal correspondence between fol (F;7Y(u)—£~1(u))?du and Cramér-von Mises
type statistics is given as follows. F!(u) can be written as F~1(T;!) where I';! is
the quantile function obtained from observations from uniform distribution. Note that
F-Y 7Y (w) — F~ Y (u) ~ ([ Yw) — w)/f(F~Y(u)) and nY/2(T';(u) — u) approaches a
Brownian bridge as n'/?(T',(u) — u) does. See Appendix in Shorack (1972) for these
results. Therefore fol (F7Y{(u)—F~1(u))2du can be understood as Cramér-von Mises statistic
where 1/f(F~1(u))? is taken as a weight function. Sce Gregory (1977a,b). Starting from
the classical Anderson and Darling statistic (1952) various authors considerd Cramér-von
Mises statistics with various weight functions. Seec de Wel and Venter (1973a,b), Gregory
(1977a,b), Pettitt (1977,1978). In particular, Pettitt (1977) considers the components of
Cramér-von Mises statistic with the weight function 1/¢(®~'(u))? where ¢ = &’ is the
standard normal density. From the above argument it is not surprising that there are close

conncctions between his resulls and our results in Section 3.1.

Appendix: Computation of components.

We discuss computational procedures used to obtain components in Section 2.3.

Let
n [n/2] k
2,5 A" __2 (—l) n! _
H, — __1112:/2_ z°/2 n—2k
(z) = (=1)"e” e ,;) 2k l(n — 2k)!
dr _ —~ (=1)*n)® .
Al Ln(z) = (—1)"€" 5—e 72" = "
(A1) dz ;) M((n = )2
n [n/2] k
d -1 , — 2k)!
Pn(:v) — 1 ___(x2 - ])'n — ( ) (2’" 2k) z'n—2k
2mn! dz = 2kl (n — k)Y(n — 2K)!
be the Hermite, Laguerre, and Legendre polynomials, respectively. Then { H,(z)/v/n! Yoo

{Ln(z)/n!}0 o) { Pa(22—1)v2n + 1}, are complete orthonormal systems of L?-spaces
associated with standard normal, standard exponential, and uniform distributions respee-

tively.

For symmetric distributions we have the following result.
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Proposition Al. Let G € T'y be symmetric about its mean ha. Let F, 1y be either
(i) standard normal and the Hermite polynomials, or (%) uniform and the Legendre poly-

nomuals, suitably normalized. Then agy =< G, g o =1 >— 0,k=1,2,....

This follows from the fact that Yok o F~1 is even about u = 1/2. TFor some cases

the following lemma is useful.

Lemma Al. Let F,G have positive densities f,g respectively. Let h,(z)f(z) be an
indefinite integral of 1, (z)f(x). Suppose that limy_, 1,0 G“l(u)f(F—l(u))hn(F—l(u)) = 0.
Then

Proof is by integration by parts.
Now we discuss each of 6 cases treated in Section 2.3.

Case 1. Uniform with respect to Normal. Tt is easy to obtain a; = 1/(2/7). Since
G(u) = u is bounded the assumption of Lemma Al is clearly satisfied. Hence vnla, =
Jo Ha1(®71(w))$(d~1 (u))du. Using Hi(x) = tHi_1(z) — (k — 1)Hy_s(z) we obtain the
following recurrence relation vnla, = —[(n — 2)/2]v/(n — 2)la,_5. This with a; above

gives all components in view of Proposition Al.

Case 2. Exponcatial with respect to Normal. Again the condition of Lemma Al

is satisfied and

Vnla, = /_oo %Hn_l(z)qb(x)dx.

This was evaluated by using Hermite-Gauss quadrature formula with 20 points.

Case 3. Logistic wilh respect to Normal. Given the components ol exponential

distribution, the components of logistic distribution can be obtained immediately. Let

G u) = —log(1 — u) be the quantile function of the exponential distribution. Then the

quantile function of the Logistic distribution can be written as (1/2)(GYu) -~ G711 — )
corresponding to G ! in (3.2). Therefore as in Section 3.1 we see that the odd order
components of logistic distribution are the same as those of exponential distribution up to

a multiplicative constant. Even order components vanish by Proposition Al.
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Cases 4 and 5. Weibull with respect to Exponential. In this case components
can be explicitly written down. Let G(z) = 1 — exp(—2°) be the distribution function of
Weibull distribution with parameter ¢. It is the distribution of Y1/¢ where Y is a standard

exponential random variable. Hence G™*(F(y)) = y/¢ and
nla, = / G HIF(y)) Ln(y)e Ydy
0
= A yY L (y)e Ydy
= Z c;T(1fe+n—17+1),
i=0

where ¢;’s are coefficients of the Laquerre polynomial given in (Al).

Case 6. Beta(2,2) with respect to Unilorm. Here the beta distribution is taken to
be on [-1,1] for convenience. Let g(z) = (3/4)(1 —z2). Then G(z) = (3/4)z — (1/4)2® +1/2.

1
\/n+ —;—an = / G~ (u)Pp(2u — 1)du
0

= /—1 zPn(2G(z) — L)g(z)dz

Therefore

Y31
= /_1 a:.Pn(:Za:—- Emg)g(m)d:v.

This can be easily evaluated using (A1).

Acknowledgements. I wish to thank T.W. Anderson for his valuable suggestions. This
research was supported in part by Army Research Office Contract DAAG29-82-K-0156.

References.

Anderson, T.W. and Darling, D.A. (1952). Asymptotic theory of certain “goodness of fit”
eriteria based on stochastic processes. Ann.Math.Statist., 23, 193-212.

Bickel, P.J. and I'reedman, D.A. (1981). Some asymptotic theory for the bootstrap.
Ann.Statist., 9, 1196-1217.



References. . _ 15

Chernoff, H., Gastwirth, J.L., and Johns, M.V. (1967). Asymptotic distribution of lincar

combinations of functions of order statistics with applications to estimation. Ann.Math.

Statist., 38, 52-72.

de Wet, T. and Venter, J.H. (1972). Asymptotic distributions of certain test criteria of
normality. S.Afr.Statist.J., 6, 135-149.

de Wet, T. and Venter, J.H. (1973a). Asymptotic distributions for quadratic forms with
applications to tests of fit. Ann.Statist., 1, 380-387.

de Wet, T. and Venter, J.H. (1973b). A goodness of fit test for a scale parameter family of
distributions. S.Afr.Statist.J., 7, 35-46.

Durbin, J. (1973). Distribution theory for tests based on the sample distribution function.
SIAM, Philadelpia. '

Durbin, J. and Knott, M. (1972). Components of Cramér-von Mises statistics, [. J.Roy.Statist.
Soc. Ser.B, 34, 290-307.

Durbin, J., Knott, M., and Taylor, C.C. (1975). Components of Cramér-von Mises statistics.
I. J.Roy.Statist.Soc. Ser.B, 37, 216-237.

Fisher, R.A. and Cornish, E.A. (1960). The pereentile points of distributions having known

cumulants. Technometrics, 2, 209-225.

Gregory, G.G. (1977a). Large sample theory for U-statistics and tests of fit. Ann.Statist.,
5, 110-123.

Gregory, G.G. (1977b). Functions of order statistics and tests of fit. S.Afr.Statist.J., 11,
99-118. |

Lebedev, N.N. (1965). Sp‘ecial functions and their applications. Prentice-Hall, New Jersey.

Pettitt, A.N. (1977). A Cramér-von Mises type goodness of fit statistic related to v/b{ and
ba. J.Roy.Statist.Soc. Ser.B, 39,364-370.

Pettitt, A.N. (1978). Generalized Cramér-von Mises statistics for the gamma distribution.
Biomeltrika, 65, 232-235.

Sarkadi, K. (1975). The consistency of the Shapiro-Francia test. Biometrika, 62, 445-450.



16

Shapiro, S.S. and Francia, R.S. (1972). An approximate analysis of variance test for

normality. J.Amer.Statist. Assoc., 67, 215-2186.

Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete
samples). Biometrika, 52, 591-611.

Shorack, G.R. (1972). Functions of order statistics. Ann.Math.Statist, 43, 412-427.

Stephens, M.A. (1975). Asymptotic properties for covariance matrices of order statistics.

Biometrika, 62, 23-28.
Stigler, S.M. (1969). Linear functions of order statistics. Ann.Math.Statist., 40, 770-778.

Sugiura, N. (1962). On the orthogonal inverse expansion with an application to the moments

of order statistics. Osaka Math.J., 14, 253-63.

Sugiura, N. (1964). The bivariate orthogonal inverse expansion and the moments of order

statistics. Osaka J.Math., 1, 45-59.
Szegd, G. (1959). Orthogonal polynomials. American Mathematical Society, Rhode Island.

Takemura, A. (1983). Table of components of quantile functions. In preparation.



TECHNICAL REPORTS
U.S. ARMY RESEARCH OFFICE - CONTRACT DAAG29-82-K-0156

"Mamimum Likelihood Estimators and Likelihood Ratio Criteria for
Multivariate Elliptically Contoured Distributions,"” T.W. Anderson and
Kai-Tai Fang, September 1982.

“A Review and Some Extensions of Takemura's Generalizations of
Cochran's Theorem," George P.H. Styan, September 1982.

"Some Further Applications of Finite Difference Operators," Kai-Tai Fang,
September 1982.

"Rank Additivity and Matrix Polynomials," George P.H. Styan and
Akimichi Takemura, September 1982.

“The Problem of Selecting a Given Number of Representative Points in a
Normal Population and a Generalized Mills' Ratio," Kai-Tai Fang and
Shu-Dong He, October 1982.

"Tensor Analysis of ANOVA Decomposition," Akimichi Takemura, November 1982,
“A Statistical Approach to Zonal Polynomials," Akimichi Takemura, January 1983.

"Orthogonal Expansion of Quantile Function and Components of the
Shapiro-Francia Statistics," Akimichi Takemura, April 1983.

"An Orthogonally Invariant Minimax Estimator of the Covariance Matrix of a
Multivariate Normal Population," Akimichi Takemura, April 1983.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATIOM PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO,

8

RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitie)

Orthogonal Expansion of Quantile Function and

- TYPE OF REPORT & PERIOD COVERED

Teéhnical Report

Components of the Shapiro-Francia Statistic

- PERFORMING ORG., REPORT NUMBER

7. AUTHOR!s)

Akimichi Takemura

CONTRACT OR GRANT NUMBER(e)

DAAG 29-82-K-0156

3. PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Statistics - Sequoia Hall
Stanford University.

Stanford, CA 94305

10. PROGRAM ELEM
AREA & WORK U

P-19065-M

ENT, PROJECT, TASK
NIT NUMBERS

1. CONTROLLING OFFiCE NAME AND ADDRESS

U.S. Army Research Office

12. REPORT DATE
April 1983

Post Oifice Box 12211
Research Triangle Park, NC 27709

13. NUMBER OF PAGES

14, MONITORING AGENCY NAME & ADDREISS(If dilferent from Controlling Ofiice)

15, SECURITY CLASS. (of thia report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING

SCHEDULE

6. DISTRIBUTION STATEMENT {of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract sntersd in Block 20, if diffssent from

Report)

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

15. KEY WORDS (Contlnus on revarae side if necessary and identily by block number)

Orthogonal expansion, quantile function,-component

statistic, Cramér-von Mises test.

s, Shapiro-Francia

20. ABSTRACT (Continue on-reverss alds if necesasry and identify by block number)

SEE REVERSE SIDE.

FCRM o
JA573 EDITION OF 1 NOV 85 1S OBSOLETE

S/N 0102-014-6601 |

DD ,

1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (#hsn Data Bntersd)




INCLASSTFTIED
SECURITY CLASSIFICATION OF THIS PAGE (Wnen Dats Entared)

20. ' Abstract.

Let F be a distribution function on‘ the réal line having finite vari-
ance. Then the quantile function F_l“ Belpngs to L2 [0,1]. Hence ‘F.—l
can be expanded in a Fourier series with respect to an appropriate complete
orthonormal systaﬁ of L2[0,l] When F is taken to be an empirical dis-
tribufion funct:x.on én; this ieads to —a ciecomposition of the Shapiro-Francia
test statistic. This is analogous to the components of the Cramér—von Mises
statistic discussed by Durbin et al. (1972,1975). The technique is aﬁplicable

to a general distribution and tests of exponentiality and uniformity are

discussed in addition to tests of normality.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whon Data Entsred)






